Synthesis of the C-14-C-26 segment of amphidinolide B

Haruaki Ishiyama, Takahiro Takemura, Masashi Tsuda and Jun’ichi Kobayashi *
Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
Received (in Cambridge) 3rd February 1999, Accepted 19th March 1999

The C-14-C-26 segment $\mathbf{2}$ of amphidinolide B 1, a potent cytotoxic 26 -membered macrolide, has been synthesized.

Amphidinolide $\mathrm{B}^{1,2} \mathbf{1}$, isolated from the culture of a symbiotic marine dinoflagellate Amphidinium sp. (strain Y-5), is a potent cytotoxic 26 -membered macrolide possessing nine chiral centers as well as unique partial structures such as an allyl epoxide and an s-cis diene. Since the absolute stereochemistry of nine chiral centers in $\mathbf{1}$ was determined by X-ray crystal analysis ${ }^{3}$ and synthesis of the C-22-C-26 segment, ${ }^{4}$ this macrolide has attracted great interest as one of the challenging targets for total synthesis. ${ }^{5-8}$ Here we describe the stereoselective synthesis of the C-14-C-26 segment $\mathbf{2}$ of amphidinolide B 1.

Amphidinolide B (1)

Results and discussion

We planned to synthesize the C-14-C-26 segment $\mathbf{2}$ by a convergent strategy through an aldol coupling reaction between the C-14-C-18 3 and C-19-C-26 4 units (Scheme 1). Unit 3 could

5

Scheme 1
be derived from commercially available 3-methylbut-3-en-1-ol 5 via asymmetric dihydroxylation using hydroquinidine pyrid-azine-1,4-diyl diether $\left[(\mathrm{DHQD})_{2} \mathrm{PYDZ}\right] \cdot \mathrm{OsO}_{4}$ catalyst 9,10 followed by C 1 -homologation using carbon tetrabromide. ${ }^{11}$ On the other hand, unit 4 could be synthesized from $(2 S, 4 S)$ -pentane-2,4-diol 6 through a Horner-Wadsworth-Emmons reaction and Sharpless asymmetric dihydroxylation. ${ }^{12}$ Triisopropylsilyl (TIPS) ether was selected as a protective group for the hydroxy groups at $\mathrm{C}-16, \mathrm{C}-18, \mathrm{C}-21$ and $\mathrm{C}-22$, while the hydroxy group at $\mathrm{C}-25$ was protected with a tert-butyldimethylsilyl (TBS) ether.

Protection of the primary hydroxy group in the chiral diol 7 (91% ee), ${ }^{10}$ derived from 3-methylbut-3-en-1-ol through asymmetric dihydroxylation, afforded a pivaloyl ester (94%). The tertiary hydroxy group was converted into a TIPS ether (93%), and then the pivaloyl ester was deprotected using DIBAL-H reduction to afford the primary alcohol $\mathbf{8}$ in 81% yield (Scheme 2). Swern oxidation of $\mathbf{8}$ followed by treatment of

Scheme 2 Reagents and conditions: a PivCl , pyridine- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$, rt, 12 h ; b TIPSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 12 h ; c DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min} ; \mathrm{d}(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 45 \mathrm{~min}$, then $\mathrm{Et}_{3} \mathrm{~N},-50{ }^{\circ} \mathrm{C}, 30 \mathrm{~min} ;$ e $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 50^{\circ} \mathrm{C}, 1 \mathrm{~h} ;$ f EtMgBr, THF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; g CAN, $\mathrm{CH}_{3} \mathrm{CN}$-water ($4: 1$), rt, 5 min ; h Dess-Martin periodinane, pyridine- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1), \mathrm{rt}, 2 \mathrm{~h}$.
the corresponding aldehyde with carbon tetrabromide gave the dibromoolefin in 90% yield, ${ }^{11}$ which was treated with 4.1 equivalents of ethylmagnesium bromide in THF at $0^{\circ} \mathrm{C}$ to afford the acetylene 9 in 97% yield. The p-methoxyphenyl (MP) group of 9 was removed by ceric ammonium nitrate (CAN) and then the hydroxy group at C-18 was oxidized by Dess-Martin periodinane ${ }^{13}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-pyridine (1:1) to afford the aldehyde 3 , corresponding to the $\mathrm{C}-14-\mathrm{C}-18$ segment, in 65% yield in two steps.

On the other hand, cyanide ${ }^{14} \mathbf{1 0}$, prepared from $(2 S, 4 S)$ -pentane-2,4-diol 6 in three steps, was converted into the α, β-unsaturated ketone $\mathbf{1 1}$ by DIBAL-H reduction and then Horner-Wadsworth-Emmons reaction with diethyl (2-oxopropyl)phosphonate in 49% yield (Scheme 3). Sharpless asym-

Scheme 3 Reagents and conditions: a DIBAL- $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 30$ min , then aq. $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{rt}, 20 \mathrm{~min}$; $\mathrm{b}(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CHCOCH}_{3}, \mathrm{NaH}, 0^{\circ} \mathrm{C}$, 20 min , and then $\mathrm{rt}, 8.5 \mathrm{~h}$; c AD-mix- $\alpha, \mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}$, $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}, t-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O},(1: 1)$, rt, 10 h ; d TIPSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 9 \mathrm{~h}$; e PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 10 \mathrm{~h}$.
metric dihydroxylation of $\mathbf{1 1}$ with AD-mix- α^{12} in t - $\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}$ ($1: 1$) followed by silica gel column chromatography (hexane-CHCl_{3}-acetone- $\mathrm{MeOH}, 45: 46: 5: 4$) gave a 21,22 -diol $\mathbf{1 2}$ in 90% yield. The absolute configurations at C-21 and C-22 of $\mathbf{1 2}$ were assigned as R and S, respectively, on the basis of the modified Mosher method ${ }^{15}$ using 22-(S)- and 22-(R)- $\alpha-$ methoxy- α-(trifluoromethyl)phenylacetyl (MTPA) esters of 12. \dagger Although protection of the two hydroxy groups of $\mathbf{1 2}$ using TIPSCl and $(i-\mathrm{Pr})_{2} \mathrm{NEt}$ failed, treatment with triisopropylsilyl trifluoromethanesulfonate (TIPSOTf) and 2,6-lutidine (2,6-dimethylpyridine) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ led to the protection of the hydroxy groups as a bis-TIPS ether and the 20-ketone carbonyl as a TIPS enol ether. The silyl enol ether $\mathbf{1 3}$ was transformed into the methyl ketone ($4,93 \%$ yield), corresponding to the C-19-C-26 unit, by treatment with pyridinium toluene-p-sulfonate (PPTS) in 93% yield.
The coupling reactions between the $\mathrm{C}-14-\mathrm{C}-183$ and the C-19-C-26 4 units (Scheme 4) are summarized in Table 1. The

aldol reaction between aldehyde $\mathbf{3}$ and the enolate generated from potassium hexamethyldisilazane (KHMDS) and the ketone $\mathbf{4}$ afforded the desired product $\mathbf{1 4}$ and its diastereomer 15 in 30 and 20% yields, respectively. On the other hand, aldehyde 3 was added to a THF solution of the zinc enolate of 4, which was generated using LiHMDS and zinc chloride at $-50^{\circ} \mathrm{C}$ to give compounds 14 and $\mathbf{1 5}$ in 9 and 26% yields, respectively, while the aldol reaction using NaHMDS gave 14 and 15 in 25 and 27% yields, respectively. The stereochemistry at C-18 of compound $\mathbf{1 4}$ is believed to be the desired
$\dagger \Delta \delta$ value $\left[\Delta \delta(\right.$ in ppm$\left.)=\delta_{S}-\delta_{R}\right]$ obtained for 22-(S)- and 22-(R)MTPA esters of $\mathbf{1 2}$ are as follows: $\mathrm{H}_{3}-19,+0.03$; H-21, +0.03 ; H-22, $-0.04 ; \mathrm{H}-25,-0.05 ; \mathrm{H}_{3}-26,-0.07 ; \mathrm{H}_{3}-32,-0.12$.

Table 1

Reagent		Temperature/ ${ }^{\circ} \mathrm{C}$	Time/h	Yield (\%)		
		14		15		
	KHMDS		-78	0.5	30	20
	NaHMDS	-78	0.5	25	27	
	LiHMDS, ZnCl_{2}	-50	1	9	26	

S-configuration, since $18 R$-configuration of $\mathbf{1 5}$ was assigned by the modified Mosher method. \ddagger Finally, treatment of 14 with TIPSOTf afforded the C-14-C-26 segment $\mathbf{2}$ in 70\% yield.
Thus the synthesis of the C-14-C-26 segment 2 lacking C-30 of amphidinolide B 1 has been completed. The synthesis of the C-1-C-13 segment and total synthesis of amphidinolide B 1 are under investigation.

Experimental

General methods

All moisture and air sensitive reactions were performed in flamed dried glassware equipped with rubber septa under a positive pressure of nitrogen or argon. $\mathrm{Et}_{2} \mathrm{O}$ and THF were distilled from sodium benzophenone ketyl prior to use. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, benzene, and pyridine were distilled from CaH_{2}, while DMSO was dried over molecular sieves ($4 \AA$). All yields reported refer to isolated material judged to be homogeneous by TLC and NMR spectroscopy. The work-up procedure involved extraction with EtOAc or ether or CHCl_{3}, washing of the organic extract with water and brine, drying (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporation of the solvent at aspirator pressure. Optical rotations were measured on a JASCO DIP-370 polarimeter and $[a]_{\mathrm{D}}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. IR spectra were recorded on a JASCO FT/IR-5300 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on Bruker ARX-500 or JEOL EX-400 spectrometers in $\mathrm{CDCl}_{3} ;{ }^{1} \mathrm{H}$ NMR spectra were recorded in ppm in relation to the residual $\mathrm{CHCl}_{3} \operatorname{signal}(\delta 7.26)$ as an internal standard, while ${ }^{13} \mathrm{C}$ NMR spectra were recorded in ppm relative to the CDCl_{3} signal (δ 77.0). Multiplicity of each carbon signal was assigned on the basis of DEPT spectra. EI and FAB mass spectra were obtained on JEOL DX-303 and JMX-HX110 spectrometers, respectively.

(2R)-4-(4-Methoxyphenoxy)-2-methyl-2-(triisopropylsilyloxy)-butan-1-ol (8)

To a solution of the diol $7^{10}(517 \mathrm{mg}, 2.28 \mathrm{mmol})$ in pyridine$\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,5 \mathrm{~mL})$ was slowly added pivaloyl chloride (337 $\mathrm{mL}, 2.74 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and stirring was continued at room temp. for 12 h . After addition of $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, the reaction mixture was worked-up with EtOAc ($40 \mathrm{~mL} \times 3$). The residue was purified by silica gel column chromatography (hexaneacetone, $8: 1 \rightarrow 4: 1$) to yield a pivaloyl ester ($667 \mathrm{mg}, 2.15 \mathrm{mmol}$, $94 \%)$. A solution of the pivaloyl ester in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was treated with 2,6-lutidine ($501 \mathrm{mg}, 4.3 \mathrm{mmol}$) and TIPSOTf (867 $\mu \mathrm{L}, 3.2 \mathrm{mmol}$) at room temp. for 12 h . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, the reaction mixture was workedup with ether ($20 \mathrm{~mL} \times 3$). The residue was purified by silica gel

[^0]column chromatography (hexane-EtOAc, 20:1 \rightarrow 15:1) to afford a TIPS ether ($931 \mathrm{mg}, 1.99 \mathrm{mmol}, 93 \%$). The TIPS ether ($882 \mathrm{mg}, 1.89 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was treated with 0.95 M DIBAL-H solution in hexane ($4.5 \mathrm{~mL}, 4.3 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ for 30 min . After addition of saturated aqueous potassium sodium tartrate $(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ to the mixture, the reaction mixture was stirred vigorously at room temp. for 1 h . The reaction mixture was worked-up with EtOAc ($20 \mathrm{~mL} \times 3$). The residue was eluted through a silica gel column (hexane-EtOAc, $10: 1 \rightarrow 8.1)$ to give a primary alcohol $\mathbf{8}(590 \mathrm{mg}, 1.54 \mathrm{mmol}$, 81%) as a colorless oil; $[a]_{\mathrm{D}}^{26}-11\left(c 1.07, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}$ $3480,1590,1230,1040$ and $825 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.05,(21 \mathrm{H}, \mathrm{m}), 1.33$ $(3 \mathrm{H}, \mathrm{s}), 2.05(2 \mathrm{H}, \mathrm{m}), 3.42(1 \mathrm{H}, \mathrm{dd}, J=9.0$ and 10.9 Hz$), 3.51$ $(1 \mathrm{H}, \mathrm{dd}, J=5.0$ and 10.9 Hz$), 3.75(3 \mathrm{H}, \mathrm{s}), 3.97(1 \mathrm{H}, \mathrm{m}), 4.09$ $(1 \mathrm{H}, \mathrm{m})$ and $6.81(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.4(3 \mathrm{C}, \mathrm{d}), 18.3(6 \mathrm{C}, \mathrm{q})$, 25.8 (q), 39.3 (t), 55.7 (q), $65.0(\mathrm{t}), 70.0(\mathrm{t}), 75.2$ (s$), 114.7$ (2C, d), $115.4(2 \mathrm{C}, \mathrm{d}), 152.7$ (s) and $154.0(\mathrm{~s}) ; \mathrm{m} / z$ (FABMS) 383 $(\mathrm{M}+\mathrm{H})^{+} ; m / z$ (HRFABMS) $383.2629\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\left.\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{Si}: 383.2617\right]$.

(3R)-5-(4-Methoxyphenoxy)-3-methyl-3-(triisopropylsilyloxy)-pent-1-yne (9)

To a solution of oxalyl chloride ($224 \mu \mathrm{~L}, 2.56 \mathrm{mmol}$) and DMSO ($275 \mu \mathrm{~L}, 3.87 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise a solution of the alcohol $8(490 \mathrm{mg}, 1.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After being stirred at $-78^{\circ} \mathrm{C}$ for 45 min , the mixture was treated with triethylamine $(915 \mu \mathrm{~L}, 6.41$ mmol) and allowed to warm to $-50^{\circ} \mathrm{C}$, and stirring was continued for 30 min . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{~mL})$, the reaction mixture was worked-up with $\mathrm{Et}_{2} \mathrm{O}$ (40 $\mathrm{mL} \times 3$) to afford a crude aldehyde (500 mg), which was used for the following reaction without separation. To a solution of the crude aldehyde $(600 \mathrm{mg})$ in toluene $(20 \mathrm{~mL})$ were added triethylamine ($1.8 \mathrm{~mL}, 12 \mathrm{mmol}$), carbon tetrabromide (2.05 g , 6.2 mmol), and triphenylphosphine ($3.14 \mathrm{~g}, 12 \mathrm{mmol}$), the mixture was stirred at $50^{\circ} \mathrm{C}$ for 1 h . After addition of water (20 mL), the reaction mixture was worked-up with CHCl_{3} (40 $\mathrm{mL} \times 3$). The residue was eluted through a silica gel column (hexane- $\mathrm{CHCl}_{3}, 8: 1$) to yield a dibrominated olefin (739 mg , $1.38 \mathrm{mmol}, 90 \%)$. A solution of the olefin $(1.04 \mathrm{~g}, 1.93 \mathrm{mmol})$ in THF (10 mL) was treated with 1 M THF solution of EtMgBr $(8 \mathrm{~mL}, 8 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ for 1 h . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, the reaction mixture was worked-up with $\mathrm{EtOAc}(40 \mathrm{~mL} \times 3)$. The residue was purified by silica gel column chromatography (hexane-EtOAc, 8:1) to afford acetylene 9 ($709 \mathrm{mg}, 1.88 \mathrm{mmol}, 97 \%$) as a colorless oil; $[\alpha]_{\mathrm{D}}^{25}-0.66$ (c $\left.1.06, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1590,1230,1045$ and $825 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.07,(21 \mathrm{H}, \mathrm{m}), 1.57(3 \mathrm{H}, \mathrm{s}), 2.19(2 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{s}), 3.75$ $(3 \mathrm{H}, \mathrm{s}), 4.16(2 \mathrm{H}, \mathrm{m})$ and $6.82(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 13.1(3 \mathrm{C}, \mathrm{d})$, $18.4(6 \mathrm{C}, \mathrm{q}), 31.3(\mathrm{q}), 44.3(\mathrm{t}), 55.7(\mathrm{q}), 65.1(\mathrm{t}), 67.6(\mathrm{~d}), 72.1(\mathrm{~s})$, 87.6 (s), 114.5 (2C, d), 115.2 (2C, d), 152.9 (s) and 153.6 (s); m / z (FABMS) $361(\mathrm{M}+\mathrm{H})^{+} ; m / z$ (HRFABMS) 361.2579 $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}$: 361.2563].

C-14-C-18 unit: (3R)-3-(triisopropylsilyloxy)-3-methylpent-4ynal (3)

Acetylene $9(70.5 \mathrm{mg}, 187 \mu \mathrm{~mol})$ in acetonitrile-water $(4: 1,2.5$ mL) was treated with ceric ammonium nitrate $(260 \mathrm{mg}, 474$ $\mu \mathrm{mol})$ at room temp. for 5 min . After addition of saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, the reaction mixture was worked-up with $\mathrm{EtOAc}(50 \mathrm{~mL} \times 3)$. The residue was purified by silica gel column chromatography (hexane-EtOAc, 6:1) to give an alcohol ($44.7 \mathrm{mg}, 165 \mathrm{mmol}, 88 \%$). To a solution of the alcohol (45 $\mathrm{mg}, 166 \mu \mathrm{~mol})$ in pyridine- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,1.6 \mathrm{~mL})$ was added Dess-Martin periodinane ($106 \mathrm{mg}, 248 \mu \mathrm{~mol}$), and stirring was continued at room temp. for 2 h . After addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}(4 \mathrm{~mL})$, the mixture was worked-up with EtOAc ($15 \mathrm{~mL} \times 3$). The residue was subjected to a silica gel column (hexane-EtOAc, 10:1) to yield aldehyde 3 ($33 \mathrm{mg}, 123$
$\mu \mathrm{mol}, 74 \%)$ as a colorless oil; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.07(18 \mathrm{H}, \mathrm{m}), 1.17$ $(3 \mathrm{H}, \mathrm{m}), 1.64(3 \mathrm{H}, \mathrm{s}), 2.56(1 \mathrm{H}, \mathrm{s}), 2.69(2 \mathrm{H}, \mathrm{m})$ and $9.93(1 \mathrm{H}$, br s); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 12.9(3 \mathrm{C}, \mathrm{d}), 18.2$ (3C, q), 18.3 (3C, q), 31.3 (q), $57.5(\mathrm{t}), 66.5(\mathrm{~d}), 73.5(\mathrm{~s}), 86.6(\mathrm{~s})$ and $201.3(\mathrm{~d}) ; m z($ FABMS $)$ $269(\mathrm{M}+\mathrm{H})^{+} ; m / z(\mathrm{HRFABMS}) 269.1913\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{Si}$: 269.1889].

(3E,5R,7S)-7-(tert-Butyldimethylsilyloxy)-5-methyloct-3-en-2one (11)

To a solution of the cyanide $10(6.69 \mathrm{~g}, 29.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(150 \mathrm{~mL})$ was added a 0.95 M hexane solution of DIBAL-H (41 $\mathrm{mL}, 39 \mathrm{mmol}$) at $-20^{\circ} \mathrm{C}$, and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min . $\mathrm{MeOH}(380 \mu \mathrm{~L})$ was added to the reaction mixture, and stirring was continued at $0^{\circ} \mathrm{C}$ for 10 min . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(34 \mathrm{~mL})$, the mixture was stirred at room temp. for 20 min . After addition of saturated aqueous potassium sodium tartrate $(60 \mathrm{~mL})$ and then $\mathrm{Et}_{2} \mathrm{O}(120 \mathrm{~mL})$, the reaction mixture was stirred vigorously at room temp. for 1 h . The reaction mixture was worked-up with $\mathrm{Et}_{2} \mathrm{O}$ (400 $\mathrm{mL} \times 3$) to afford a crude aldehyde (6.64 g), which was used for the following reaction without separation. To a suspension of $\mathrm{NaH}(3.0 \mathrm{~g}, 74 \mathrm{mmol})$ in THF (100 mL) was added diethyl (2oxopropyl)phosphonate $(14.2 \mathrm{~g}, 74 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temp. for 1 h . To this mixture was added a solution of the crude aldehyde $(6.64 \mathrm{~g})$ in THF (50 mL) at $0^{\circ} \mathrm{C}$, and stirring was continued at room temp. for 8.5 h . After addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(120 \mathrm{~mL})$, the mixture was worked-up with ether $(250 \mathrm{~mL} \times 3)$. The residue was purified by silica gel column chromatography (hexane$\left.\mathrm{Et}_{2} \mathrm{O}, 8: 1-5: 1\right)$ to give an α, β-unsaturated ketone $11(3.89 \mathrm{~g}$, $14.4 \mathrm{mmol}, 49 \%$ in two steps) as a colorless oil; $[\alpha]_{\mathrm{D}}^{26}-7.7$ (c $\left.1.00, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 1700,1680,1255$ and $835 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $0.02(3 \mathrm{H}, \mathrm{s}), 0.03(3 \mathrm{H}, \mathrm{s}), 0.86(9 \mathrm{H}, \mathrm{s}), 1.04(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz})$, $1.11(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 1.31(1 \mathrm{H}, \mathrm{m}), 1.58(1 \mathrm{H}, \mathrm{m}), 2.22(3 \mathrm{H}$, s), $2.47(1 \mathrm{H}, \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{m}), 6.01(1 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz})$ and $6.70(1 \mathrm{H}$, dd, $J=7.3$ and 15.9 Hz$) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-5.01(\mathrm{q}),-4.36$ (q), 17.8 (s), 18.6 (q), 23.8 (q), 25.6 (3C, q), 26.6 (d), 32.9 (q), $45.6(\mathrm{t}), 65.8(\mathrm{~d}), 128.8(\mathrm{~d}), 153.6(\mathrm{~d})$ and $198.5(\mathrm{~s}) ; \mathrm{m} / \mathrm{z}$ (EIMS) $270\left(\mathrm{M}^{+}\right) ; m / z(H R E I M S) 270.2020\left(\mathrm{M}^{+}\right.$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{30^{-}}$ $\left.\mathrm{O}_{2} \mathrm{Si}: 270.2025\right)$.

(3R,4S,5R,7S)-7-(tert-Butyldimethylsilyloxy)-3,4-dihydroxy-5-methyloctan-2-one (12)

To a suspension of AD-mix- $\alpha(21 \mathrm{~g})$ in t - BuOH -water $(1: 1,100$ mL) were added potassium osmate dihydrate ($44 \mathrm{mg}, 120$ $\mu \mathrm{mol}), \mathrm{NaHCO}_{3}(2.52 \mathrm{~g}, 30 \mathrm{mmol})$, and methanesulfonanide ($3.6 \mathrm{~g}, 38 \mathrm{mmol}$) at room temp., and the mixture was stirred for 10 min . To the mixture was added a solution of compound $\mathbf{1 1}$ $(2.707 \mathrm{~g}, 10.0 \mathrm{mmol})$ in t - BuOH -water $(1: 1,20 \mathrm{~mL})$ at $4^{\circ} \mathrm{C}$, and stirring was continued at $4^{\circ} \mathrm{C}$ for 13 h . After addition of $\mathrm{Na}_{2} \mathrm{SO}_{3}(3.78 \mathrm{~g}, 30 \mathrm{mmol})$, stirring was further continued at room temp. for 1 h . The mixture was worked-up with EtOAc $(300 \mathrm{~mL} \times 3)$. The residue was eluted on a silica gel column (hexane- CHCl_{3}-acetone- $\mathrm{MeOH}, 45: 46: 5: 4$) to yield a diol 12 $(2.74 \mathrm{~g}, 9.00 \mathrm{mmol}, 90 \%)$ as a colorless oil; $[a]_{\mathrm{D}}^{26}-2.1(c 1.01$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3445,1715$ and $835 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.07(6 \mathrm{H}, \mathrm{s})$, $0.89(9 \mathrm{H}, \mathrm{s}), 1.04(3 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 1.14(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz})$, $1.23(1 \mathrm{H}, \mathrm{m}), 1.64(1 \mathrm{H}, \mathrm{m}), 2.10(1 \mathrm{H}, \mathrm{m}), 2.27(3 \mathrm{H}, \mathrm{s}), 3.66(1 \mathrm{H}$, $\mathrm{m}), 3.93(1 \mathrm{H}, \mathrm{m})$ and $4.23(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-4.30(\mathrm{q}),-3.73$ (q), 15.8 (s), 18.4 (q), 24.8 (q), 25.2 (q), 25.6 (3C, q), 33.7 (d), $43.6(\mathrm{t}), 66.5(\mathrm{~d}), 76.0(\mathrm{~d}), 78.0(\mathrm{~d})$ and $212.0(\mathrm{~s}) ; \mathrm{m} / \mathrm{z}$ (FABMS) $305(\mathrm{M}+\mathrm{H})^{+} ; m / z(\mathrm{HRFABMS}) 305.2173\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{Si}$: 305.2148].

(3R,4S,5R,7S)-7-(tert-Butyldimethylsilyloxy)-5-methyl-2,3,4-tris(triisopropylsilyloxy)oct-1-ene (13)

To a solution of the diol $12(49.5 \mathrm{mg}, 242 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4$ mL) were added 2,6 -lutidine $(0.18 \mathrm{~mL}, 2.18 \mathrm{mmol})$ and triiso-
propylsilyl trifluoromethanesulfonate ($0.27 \mathrm{~mL}, 1.45 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 9 h . After addition of aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$, the mixture was worked-up with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$. The residue was purified by silica gel column chromatography (hexane) to afford a silyl enol ether $\mathbf{1 3}(147 \mathrm{mg}, 191 \mu \mathrm{~mol}, 79 \%)$ as a colorless oil; $[a]_{\mathrm{D}}^{26}-0.48\left(c 1.03, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 1625,1465,885$ and 835 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.02(3 \mathrm{H}, \mathrm{s}), 0.22(3 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}, \mathrm{s}), 1.07(57 \mathrm{H}$, $\mathrm{m}), 1.14(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 1.23(9 \mathrm{H}, \mathrm{m}), 1.24(1 \mathrm{H}, \mathrm{m}), 1.74$ $(1 \mathrm{H}, \mathrm{m}), 2.08(1 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{br}$ s), $3.87(1 \mathrm{H}, \mathrm{m}), 4.13(1 \mathrm{H}$, br s), $4.20(1 \mathrm{H}, \mathrm{s})$ and $4.50(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-4.51(\mathrm{q}),-4.18$ (q), 12.9 (3C, d), $13.0(3 \mathrm{C}, \mathrm{d}), 13.6$ (3C, d), 15.3 (s), 18.3 (12C, q), 18.5 ($6 \mathrm{C}, \mathrm{q}), 22.7$ (q), 26.0 (3C, q), 32.7 (d), 44.0 (t), 66.2 (d), 75.4 (d), 78.8 (d), 90.1 (t) and 159.4 (s); m / z (FABMS) $773\left(\mathrm{M}^{+}\right) ; \mathrm{m} / \mathrm{z}$ (HRFABMS) $773.5365\left(\mathrm{M}^{+}\right.$. Calc. for $\mathrm{C}_{42} \mathrm{H}_{92} \mathrm{O}_{4} \mathrm{Si}_{4}: 773.5321$).

C-19-C-26 unit: (3R,4S, 5R,7S)-3,4-bis(triisopropylsilyloxy)-7-(tert-butyldimethylsilyloxy)-5-methyloctan-2-one (4)

Compound 13 ($155.3 \mathrm{mg}, 201 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was treated with pyridinium toluene- p-sulfonate ($53 \mathrm{mg}, 207 \mu \mathrm{~mol}$) at room temp. for 10 h . After addition of water (10 mL), the reaction mixture was worked-up with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL} \times 3)$. The residue was purified by silica gel column chromatography (hexane- $\mathrm{Et}_{2} \mathrm{O}, 8: 1-5: 1$) to give a ketone $\mathbf{4}(114.7 \mathrm{mg}, 186 \mu \mathrm{~mol}$, 93%) as a colorless oil; $[a]_{\mathrm{D}}^{24}-34.4\left(c 1.07, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}$ 1725 and $835 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.00(3 \mathrm{H}, \mathrm{s}), 0.01(3 \mathrm{H}, \mathrm{s}), 0.79(6 \mathrm{H}, \mathrm{d}$, $J=5.6 \mathrm{~Hz}), 0.85(9 \mathrm{H}, \mathrm{s}), 1.06(21 \mathrm{H}, \mathrm{m}), 1.15(21 \mathrm{H}, \mathrm{m}), 1.22$ $(1 \mathrm{H}, \mathrm{m}), 1.60(1 \mathrm{H}, \mathrm{m}), 2.12(1 \mathrm{H}, \mathrm{m}), 2.24(3 \mathrm{H}, \mathrm{s}), 3.83(1 \mathrm{H}, \mathrm{m})$, $3.90(1 \mathrm{H}, \mathrm{m})$ and $4.34(1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-4.7(\mathrm{q})$, -4.1 (q), 12.5 (3C, d), 13.0 (3C, d), 14.5 (s$), 17.8$ (q), 18.15 (6 C , q), $18.18(4 \mathrm{C}, ~ q), 18.4(2 \mathrm{C}, \mathrm{q}), 24.7$ (q), 25.9 (3C, q), 29.2 (q), $31.0(\mathrm{~d}), 44.9(\mathrm{~d}), 66.0(\mathrm{~d}), 80.0(\mathrm{~d}), 81.7$ (d) and $208.6(\mathrm{~s})$; m / z (FABMS) $617(\mathrm{M}+\mathrm{H})^{+} ; m / z$ (HRFABMS) 617.4832 $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{33} \mathrm{H}_{73} \mathrm{O}_{4} \mathrm{Si}$: 617.4817].

Aldol coupling between C-14-C18 (3) and C-19-C-26 (4) units

To a stirring solution of the ketone $4(120.6 \mathrm{mg}, 196 \mu \mathrm{~mol})$ in THF (2 mL) was added 0.5 M potassium hexamethyldisilazide in THF $(570 \mu \mathrm{~L}, 285 \mu \mathrm{~mol})$ at $-78^{\circ} \mathrm{C}$. After being stirred at $-78^{\circ} \mathrm{C}$ for 30 min , the mixture was added to a solution of aldehyde $3(43.7 \mathrm{mg}, 163 \mu \mathrm{~mol})$ in THF (2 mL) at $-78^{\circ} \mathrm{C}$, and the mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min . After addition of 1 M phosphate buffer ($\mathrm{pH} 7.3,2 \mathrm{~mL}$), the reaction mixture was worked-up with EtOAc ($10 \mathrm{~mL} \times 3$). The residue was eluted on a silica gel column (hexane- $\mathrm{CHCl}_{3}, 2: 1$) to yield ($3 S, 5 S, 8 R, 9 S, 10 R, 12 S$)-12-(tert-butyldimethylsilyloxy)-3,10-dimethyl-5-hydroxy-3,8,9-tris(triisopropylsilyoxy)tridec-1-yn-7one $14(43.3 \mathrm{mg}, 48.9 \mu \mathrm{~mol}, 30 \%)$ and its $5 R$-isomer $15(28.9$ $\mathrm{mg}, 32.6 \mu \mathrm{~mol}, 20 \%$), and the ketone $4(55.4 \mathrm{mg}, 89.8 \mu \mathrm{~mol}$, 46\%). 14: a colorless oil; $[a]_{\mathrm{D}}^{25}-15\left(c 0.93, \mathrm{CHCl}_{3}\right.$); $v_{\max } / \mathrm{cm}^{-1}$ 1720 and $835 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.02(3 \mathrm{H}, \mathrm{s}), 0.03(3 \mathrm{H}, \mathrm{s}), 0.79(9 \mathrm{H}, \mathrm{d}$, $J=5.6 \mathrm{~Hz}), 0.87(9 \mathrm{H}, \mathrm{s}), 1.11(61 \mathrm{H}, \mathrm{m}), 1.59(1 \mathrm{H}, \mathrm{m}), 1.80(1 \mathrm{H}$, dd, $J=1.7$ and 14.1 Hz$), 1.95(1 \mathrm{H}, \mathrm{dd}, J=8.9$ and 14.1 Hz$)$, $1.63(3 \mathrm{H}, \mathrm{s}), 2.17(1 \mathrm{H}, \mathrm{m}), 2.43(1 \mathrm{H}, \mathrm{s}), 2.69(1 \mathrm{H}, \mathrm{dd}, J=2.5$ and 18.4 Hz$), 3.00(1 \mathrm{H}, \mathrm{dd}, J=8.1$ and 18.4 Hz$), 3.46(1 \mathrm{H}, \mathrm{d}$, $J=1.9 \mathrm{~Hz}), 3.84(1 \mathrm{H}, \mathrm{m}), 3.97(1 \mathrm{H}, \mathrm{m})$ and $4.41(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-4.6(\mathrm{q}),-4.1(\mathrm{q}), 12.5(6 \mathrm{C}, \mathrm{d}), 13.1(3 \mathrm{C}, \mathrm{d}), 14.5(\mathrm{~s})$, $18.1(4 \mathrm{C}, \mathrm{q}), 18.2(6 \mathrm{C}, \mathrm{q}), 18.3(3 \mathrm{C}, \mathrm{q}), 18.4$ ($6 \mathrm{C}, \mathrm{q}$), 24.7 (q), $25.9(3 \mathrm{C}, \mathrm{q}), 30.5(\mathrm{~d}), 30.6(\mathrm{q}), 45.3(\mathrm{t}), 49.0(\mathrm{t}), 51.1$ (t), 64.6 (d), 66.0 (d), 69.0 (d), 72.4 (s), 80.0 (d), 81.2 (d), 88.0 (s) and 210.7 (s); m / z (FABMS) $907(\mathrm{M}+\mathrm{Na})^{+} ; m / z$ (HRFABMS) 907.6491 [$(\mathrm{M}+\mathrm{Na})^{+}$. Calc. for $\mathrm{C}_{48} \mathrm{H}_{100} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}$: 907.6494]. 15: a colorless oil; $[a]_{\mathrm{D}}^{27}-45\left(c 1.00, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1} 3530,1720$ and 835 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.02(3 \mathrm{H}, \mathrm{s}), 0.03(3 \mathrm{H}, \mathrm{s}), 0.78(9 \mathrm{H}, \mathrm{m}), 0.86(9 \mathrm{H}, \mathrm{s})$, $1.12(61 \mathrm{H}, \mathrm{m}), 1.59(1 \mathrm{H}, \mathrm{m}), 1.60(3 \mathrm{H}, \mathrm{s}), 1.77(1 \mathrm{H}, \mathrm{m}), 1.89$
$(1 \mathrm{H}, \mathrm{dd}, J=9.5$ and 14.2 Hz$), 2.11(1 \mathrm{H}, \mathrm{m}), 2.45(1 \mathrm{H}, \mathrm{s}), 2.80$ $(2 \mathrm{H}, \mathrm{m}), 3.52(1 \mathrm{H}, \mathrm{m}), 3.83(1 \mathrm{H}, \mathrm{m}), 3.96(1 \mathrm{H}, \mathrm{m})$ and $4.49(2 \mathrm{H}$, $\mathrm{m}) ; ~ m / z$ (FABMS) $907(\mathrm{M}+\mathrm{Na})^{+} ; m / z$ (HRFABMS) 907.6497 $\left[(\mathrm{M}+\mathrm{Na})^{+}\right.$. Calc. for $\left.\mathrm{C}_{48} \mathrm{H}_{100} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}, 907.6494\right]$.

C-14-C-26 segment: ($3 S, 5 S, 8 R, 9 S, 10 R, 12 S$)-12-(tert-butyl-dimethylsilyloxy)-3,10-dimethyl-3,5,8,9-tetrakis(triisopropyl-silyloxy)tridec-1-yn-7-one (2)

A solution of compound $\mathbf{1 4}(18 \mathrm{mg}, 20.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with triisopropylsilyl trifluoromethanesulfonate ($40 \mu \mathrm{~L}$, $215 \mu \mathrm{~mol})$ and 2,6 -lutidine ($35 \mu \mathrm{~L}, 300 \mu \mathrm{~mol}$) at room temp. for 36 h . After addition of $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, the mixture was worked-up with EtOAc $(2 \mathrm{~mL} \times 3)$. The residue was purified by silica gel column chromatography (hexane) to give the C-14-C-26 segment $2(15 \mathrm{mg}, 14.4 \mu \mathrm{~mol}, 70 \%)$ as a colorless oil; $[a]_{\mathrm{D}}^{27}-9.2(c$ $\left.1.00, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3310,1725$ and $835 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.03$ $(3 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}, \mathrm{s}), 0.81(12 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 0.87(9 \mathrm{H}, \mathrm{s}), 1.12$ $(79 \mathrm{H}, \mathrm{m}), 1.58(3 \mathrm{H}, \mathrm{s}), 1.60(1 \mathrm{H}, \mathrm{m}), 1.80(1 \mathrm{H}, \mathrm{dd}, J=5.6$ and $13.5 \mathrm{~Hz}), 2.07(1 \mathrm{H}, \mathrm{dd}, J=5.6$ and 13.5 Hz$), 2.14(1 \mathrm{H}, \mathrm{m}), 2.43$ $(1 \mathrm{H}, \mathrm{s}), 3.02(2 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{m}), 3.92(1 \mathrm{H}, \mathrm{m}), 4.35(1 \mathrm{H}, \mathrm{d}$, $J=4.7 \mathrm{~Hz})$ and $4.66(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)-4.23(\mathrm{q}),-4.18(\mathrm{q})$, 12.5 ($6 \mathrm{C}, \mathrm{d}$), 13.1 (3C, d), 13.8 (3C, d), 15.0 (s), 17.9 (q), 18.1 (3C, q), 18.2 (6C, q), 18.3 (3C, q), 18.4 (6C, q), 18.5 ($6 \mathrm{C}, \mathrm{s}$), 24.6 $(\mathrm{q}), 26.0(3 \mathrm{C}, \mathrm{q}), 30.4(\mathrm{~d}), 30.5(\mathrm{q}), 45.2(\mathrm{t}), 50.0(\mathrm{t}), 52.5(\mathrm{t})$, 66.2 (d), 68.3 (d), 73.2 (s), 80.1 (d), 88.1 (s) and 206.9 (s); m / z (FABMS) $1041\left(\mathrm{M}+\mathrm{H}^{+} ; ~ m / z\right.$ (HRFABMS) 1041.7990 $\left[(\mathrm{M}+\mathrm{H})^{+}\right.$. Calc. for $\mathrm{C}_{57} \mathrm{H}_{121} \mathrm{O}_{6} \mathrm{Si}_{5}$: 1041.8010].

Acknowledgements

We are grateful to Professor M. Ishibashi, Chiba University, for helpful discussions. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan. H. I. thanks Research Fellowships of the Japanese Society for the Promotion of Science for Young Scientists.

References

1 M. Ishibashi, Y. Ohizumi, M. Hamashima, H. Nakamura, Y. Hirata, T. Sasaki and J. Kobayashi, J. Chem. Soc., Chem. Commun., 1987, 1127.
2 J. Kobayashi, M. Ishibashi, H. Nakamura, Y. Ohizumi, Y. Yamasu, Y. Hirata, T. Sasaki, T. Ohta and S. Nozoe, J. Nat. Prod., 1989, 52, 1036.

3 I. Bauer, L. Maranda, Y. Shimizu, R. W. Peterson, L. Cornell, J. R. Steiner and J. Clardy, J. Am. Chem. Soc., 1994, 116, 2657.

4 M. Ishibashi, H. Ishiyama and J. Kobayashi, Tetrahedron Lett., 1994, 35, 8241.
5 T. K. Chakraborty, D. Thippeswamy, V. R. Suresh and S. Jayaprakash, Chem. Lett., 1997, 563.
6 T. K. Chakraborty and V. R. Suresh, Chem. Lett., 1997, 565.
7 D.-H. Lee and S.-W. Lee, Tetrahedron Lett., 1997, 45, 7909.
8 B. M. Cid and G. Pattenden, Synlett, 1998, 540.
9 E. J. Corey, M. J. Grogan and M. C. Noe, Tetrahedron Lett., 1994, 35, 6427.
10 E. J. Corey, A. Guzman-Perez and M. C. Noe, J. Am. Chem. Soc., 1995, 117, 10805.
11 E. J. Corey and P. L. Fuchs, Tetrahedron Lett., 1972, 36, 3769.
12 K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K.-S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang, D. Xu and X.-L. Zhang, J. Org. Chem., 1992, 57, 2769.

13 D. B. Dess and J. C. Martin, J. Org. Chem., 1983, 48, 4155.
14 T. Imaeda, Y. Hamada and T. Shioiri, Tetrahedron Lett., 1994, 35, 591.

15 I. Ohtani, T. Kusumi, Y. Kashman and H. Kakisawa, J. Am. Chem. Soc., 1991, 113, 4092.

[^0]: $\ddagger \Delta \delta$ value $\left[\Delta \delta\right.$ (in ppm) $\left.=\delta_{S}-\delta_{R}\right]$ obtained for 22- (S) - and 22-(R)MTPA esters of $\mathbf{1 5}$ are as follows: $\mathrm{H}-14,+0.09 ; \mathrm{H}_{2}-17,+0.01$ and $+0.01 ; \mathrm{H}-18,+0.07 ; \mathrm{H}_{2}-19,-0.07$ and $-0.05 ; \mathrm{H}-21,-0.01 ; \mathrm{H}-22,0.01$; $\mathrm{H}-25,-0.01 ; \mathrm{H}_{3}-26,-0.03$.

